Abstract

AbstractPredicting the peak‐season (July–September) tropical cyclones (TCs) in Southeast Asia (SEA) several months ahead remains challenging, related to limited understanding and prediction of the dynamics affecting the variability of SEA TC activity. Here, we introduce a new statistical approach to sequentially identify mutually independent predictors for the occurrence frequency of peak‐season TCs in the South China Sea (SCS) and east of the Philippines (PHL). These predictors, which are identified from the preseason (April‐June) environmental fields, can capture the interannual variability of different clusters of peak‐season TCs, through a cross‐season effect on large‐scale environment that governs TC genesis and track. The physically oriented approach provides a skillful seasonal prediction in the 41‐year period (1979–2019), with r = 0.73 and 0.54 for SCS and PHL TC frequency, respectively. The lower performance for PHL TCs is likely related to the nonstationarity of the cross‐season TC‐environment relationship. We further develop the statistical approach to a hybrid method using the predictors derived from dynamical seasonal forecasts. The hybrid prediction shows a significant skill for both SCS and PHL TCs, for lead times up to four or 5 months ahead, related to the good performance of models for the sea surface temperatures and low‐level winds in the tropics. The statistical and hybrid predictions outperform the dynamical predictions, showing the potential for operational use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.