Abstract

Stimuli from the road surface cause car vibrations. The suspension system ensures the vehicle’s stability and smoothness when moving. In this research, the author introduces the use of active suspension with a hydraulic actuator to improve the comfort of cars. Car oscillations are described based on a quarter-dynamics model with five state variables. Besides, the nonlinear system’s SM (sliding mode) control algorithm is used to control the system. The SM algorithm’s parameters are optimally selected using the multiple loop algorithm. The multiple loop algorithm allows the values to vary within a predefined limit and provides an optimal parameter based on the vehicle’s vibration conditions. This is a new point in the paper compared to previous studies. The output of the simulation problem includes displacements and accelerations of both the sprung and unsprung masses. In addition, the change of dynamics force at the wheel is also considered when evaluating the interaction between the wheel and the road surface. According to the paper’s results, the vehicle body’s acceleration and displacement values are strongly reduced when using the SM algorithm, compared with cars with only traditional suspension. In addition, the change in dynamics force at the wheel is not significant when using this algorithm. As a result, the car’s smoothness has been improved while the vehicle’s stability has not been lost. The phenomenon of “chattering” still occurs in some cases; however, its effect is negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call