Abstract

Tight gas sandstone (TGS) reservoirs are one of the most integral parts of the unconventional reservoirs pyramid. Uncertainty in petrophysical properties of a TGS reservoir will cause great challenges in reservoir characterization and also 3D properties modeling. The main goal of this study is to implement a new workflow based on saturation height modeling (SHM) to reduce this uncertainty in a TGS reservoir by acquiring a global in situ water saturation function and also calculating more accurate permeability values. Capillary pressure curves and well logs from ten different wells in four different giant basins of western US TGS reservoirs are the input data in this study. After grouping the capillary pressure curves based on the corresponding cores sorting, size, and texture, and also applying some initial corrections, five different SHM methods have been applied to each group. Using regression methods, the function of each model has been rewritten based on the cores’ petrophysical properties. By entering the porosity and permeability logs of each well in the rewritten functions and by implementing the height above free water level (HAFWL), a water saturation profile has been calculated for each well. Using standard error of estimate analysis between the calculated water saturation profile and the log-based water saturation profile as the base one, the most reliable SHM method has been recognized. Using water saturation and porosity logs and also HAFWL value in each well, accurate permeability values have been calculated based on the saturation height function of the best model. Finally, the regression method between the calculated permeability and the accurate cores permeability values approves the reliability of the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call