Abstract

The characteristic cluster pattern of cross-peaks in a 2D asynchronous spectrum provides an effective way to reveal the specific physicochemical nature of subtle spectral changes caused by intermolecular interactions. However, the inevitable presence of noise in the 1D spectra used to construct a 2D asynchronous spectrum is significantly amplified, which poses a serious challenge in identifying the correct cluster pattern of the cross-peaks. While mirror symmetry occurs in some types of cross-peaks, it does not occur in other types. The Kolmogorov-Smirnov test provides a statistical means to check whether the mirror symmetry exists or not between a pair of cross-peaks covered by heavy noise. Thus, different types of cross-peak clusters can be distinguished by excavating intrinsic spectral features from the noisy 2D asynchronous spectrum. The effectiveness of this approach in investigating the nature of intermolecular interactions was showcased in both a simulated model system and a real artemisinin/N-methyl pyrrolidone system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.