Abstract

We propose a new method of computing real emission contributions to hard QCD processes. Our approach uses sector decomposition of the exclusive final-state phase space to enable extraction of all singularities of the real emission matrix elements before integration over any kinematic variable. The exact kinematics of the real emission process are preserved in all regions of phase space. Traditional approaches to extracting singularities from real emission matrix elements, such as phase space slicing and dipole subtraction, require both the determination of counterterms for double real emission amplitudes in singular kinematic limits and the integration of these contributions analytically to cancel the resulting singularities against virtual corrections. Our method addresses both of these issues. The implementation of constraints on the final-state phase space, including various jet algorithms, is simple using our approach. We illustrate our method using e{sup +}e{sup -} {yields} jets at {Omicron}({alpha}{sub S}{sup 2}) as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.