Abstract
We describe a novel approach to RBF approximation, which combines two new elements: (1) linear radial basis functions and (2) weighting the model by each descriptor’s contribution. Linear radial basis functions allow one to achieve more accurate predictions for diverse data sets. Taking into account the contribution of each descriptor produces more accurate similarity values used for model development. The method was validated on 14 public data sets comprising nine physicochemical properties and five toxicity endpoints. We also compared the new method with five different QSAR methods implemented in the EPA T.E.S.T. program. Our approach, implemented in the program GUSAR, showed a reasonable accuracy of prediction and high coverage for all external test sets, providing more accurate prediction results than the comparison methods and even the consensus of these methods. Using our new method, we have created models for physicochemical and toxicity endpoints, which we have made freely available in the form of an online service at http://cactus.nci.nih.gov/chemical/apps/cap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.