Abstract

Tributary phosphorus (P) loads are one of the main drivers of eutrophication problems in freshwater lakes. Being able to predict P loads can aid in understanding subsequent load patterns and elucidate potential degraded water quality conditions in downstream surface waters. We demonstrate the development and performance of an integrated multimedia modeling system that uses machine learning (ML) to assess and predict monthly total P (TP) and dissolved reactive P (DRP) loads. Meteorological variables from the Weather Research and Forecasting (WRF) Model, hydrologic variables from the Variable Infiltration Capacity model, and agricultural management practice variables from the Environmental Policy Integrated Climate agroecosystem model are utilized to train the ML models to predict P loads. Our study presents a new modeling methodology using as testbeds the Maumee, Sandusky, Portage, and Raisin watersheds, which discharge into Lake Erie and contribute to significant P loads to the lake. Two models were built, one for TP loads using 10 environmental variables and one for DRP loads using nine environmental variables. Both models ranked streamflow as the most important predictive variable. In comparison with observations, TP and DRP loads were predicted very well temporally and spatially. Modeling results of TP loads are within the ranges of those obtained from other studies and on some occasions more accurate. Modeling results of DRP loads exceed performance measures from other studies. We explore the ability of both ML-based models to further improve as more data become available over time. This integrated multimedia approach is recommended for studying other freshwater systems and water quality variables using available decadal data from physics-based model simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.