Abstract

On doubling metric measure spaces endowed with a strongly local regular Dirichlet form, we show some characterisations of pointwise upper bounds of the heat kernel in terms of global scale-invariant inequalities that correspond respectively to the Nash inequality and to a Gagliardo–Nirenberg type inequality when the volume growth is polynomial. This yields a new proof and a generalisation of the well-known equivalence between classical heat kernel upper bounds and relative Faber–Krahn inequalities or localised Sobolev or Nash inequalities. We are able to treat more general pointwise estimates, where the heat kernel rate of decay is not necessarily governed by the volume growth. A crucial role is played by the finite propagation speed property for the associated wave equation, and our main result holds for an abstract semigroup of operators satisfying the Davies–Gaffney estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call