Abstract

The main thrust of this project was to develop a process including data-gathering and processing techniques that would consistently and without fail discover the phase distribution of a wave front. In the course of the work, new thoughts on data gathering evolved to the point where a novel type of intensity picture bearing little or no resemblance to the wave front or its phase distribution was required for mathematical processing to achieve the phase distribution. For convenience these information images have been dubbed phasorgrams. Phasorgrams are recorded in the diffractive plane or in the image plane of an application device. Additional data, while helpful, are not required, thus eliminating the need for data from two Fourier conjugate planes as in the well-known method of Gerchberg and Saxton. The mathematical processing of these data is carried out by an iterative algorithm which also is new. This algorithm, given good data, has not failed to achieve the phase distribution. Contemporary devices have not been designed to measure the new kinds of data required for the process. Therefore, several novel devices are suggested. The new process could have major implications for the phase problem of X-ray crystallography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.