Abstract

Real-time planning and scheduling in a shop floor are not easy to accomplish due to the concurrent flow of various parts as well as sharing of different types of resources. Multi-pass scheduling is a well known method for solving the aforementioned problem. Its success depends largely on selecting the best decision-making rule fast and effectively. Although many efforts have been made in the past, a way to minimize the computational load of rule evaluation and selection has yet to appear. The objective of the paper is to apply a nested partitioning (NP) method and an optimal computing budget allocation (OCBA) method to reduce the computational load without the loss of the performance of multi-pass scheduling. The experimental design and analysis was performed to validate that NP and OCBA can be successfully applied to multi-pass scheduling in order to enhance the performance of multi-pass scheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.