Abstract

With the rapid expansion of urban built-up areas in recent years, accurate and long time series monitoring of urban built-up areas is of great significance for healthy urban development and efficient governance. As the basic carrier of urban activities, the accurate monitoring of urban built-up areas can also assist in the formulation of urban planning. Previous studies on urban built-up areas mainly focus on the analysis of a single time section, which makes the extraction results exist with a certain degree of contingency. In this study, a U-net is used to extract and monitor urban built-up areas in the Kunming and Yuxi area from 2012 to 2021 based on nighttime light data and POI_NTL (Point of Interest_Nighttime light) data. The results show that the highest accuracy of single nighttime light (NTL) data extraction was 89.31%, and that of POI_NTL data extraction was 95.31%, which indicates that data fusion effectively improves the accuracy of built-up area extraction. Additionally, the comparative analysis of the results of built-up areas and the actual development of the city shows that NTL data is more susceptible to urban emergencies in the extraction of urban built-up areas, and POI (Point of interest) data is subject to the level of technology and service available in the region, while the combination of the two can avoid the occasional impact of single data as much as possible. This study deeply analyzes the results of extracting urban built-up areas from different data in different periods and obtains the feasible method for the long time sequence monitoring of urban built-up areas, which has important theoretical and practical significance for the formulation of long-term urban planning and the current high-quality urban development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.