Abstract
This article presents an approach to measure the effect of promotions on customer traffic, a measure of effectiveness of retail promotions important both to managers and scholars. This effect is unobservable because one lacks baseline measures of traffic: one cannot measure traffic simultaneously with and without a promotion. Hence, the assessment of this effect remains a challenge. However, adoption of imaging and other forms of electronic monitoring allows retailers to collect traffic data, until recently unavailable, on the behavior of both actual and potential customers. Making these data useful for business decisions requires new analytical methods. The approach of this research is novel in two ways: First, a counterfactual argument is the foundation to predict the baseline series. Second, the approach defines predicted residuals to estimate hourly-specific effects on traffic, which one computes after the promotion. Computing the baseline predictions uses a Poisson model with effect-parameters such as time of the day, day of the week, week of the month, secular trends and others, to capture sources of systematic variability. The article illustrates the use of simple plots to visualize and communicate the evolution of the promotion effects. An illustration uses data from Skillup-Chile, an imaging and analytics company.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.