Abstract
We develop a new method to uniquely solve a large class of heat equations, so called Kolmogorov equations in infinitely many variables. The equations are analyzed in spaces of sequentially weakly continuous functions weighted by proper (Lyapunov type) functions. In this way, for the first time, the solutions are constructed everywhere without exceptional sets for equations with possibly non-locally Lipschitz drifts. Apart from general analytic interest, the main motivation is to apply this to uniquely solve martingale problems in the sense of Stroock–Varadhan given by stochastic partial differential equations from hydrodynamics, such as the stochastic Navier–Stokes equations. In this Note this is done in the case of the stochastic generalized Burgers equation. Uniqueness is shown in the sense of Markov flows. To cite this article: M. Röckner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.