Abstract

When using clutter suppression interferometry (CSI) algorithm to perform signal processing in a three-channel wide-area surveillance radar system, the primary concern is to effectively suppress the ground clutter. However, a portion of moving target’s energy is also lost in the process of channel cancellation, which is often neglected in conventional applications. In this paper, we firstly investigate the two-dimensional (radial velocity dimension and squint angle dimension) residual amplitude of moving targets after channel cancellation with CSI algorithm. Then, a new approach is proposed to increase the two-dimensional detection probability of moving targets by reserving the maximum value of the three channel cancellation results in non-uniformly spaced channel system. Besides, theoretical expression of the false alarm probability with the proposed approach is derived in the paper. Compared with the conventional approaches in uniformly spaced channel system, simulation results validate the effectiveness of the proposed approach. To our knowledge, it is the first time that the two-dimensional detection probability of CSI algorithm is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.