Abstract

AbstractGuidewire insertion is an imperative task of minimally invasive medical procedures. During the procedure, surgeons need to steer long flexible thin wires through patient's blood vessels to reach a clinical target. In this paper, we present a novel approach to model haptics of guidewire insertion process for training simulation. The algorithm also allows for the analysis of the insertion process through subtle physical behaviours of guidewires via force feedbacks. The method includes a 6‐DoF dynamic coupling between a rigid body, i.e. the virtual tool and the deformation of the wire simulated as an elastic rod. Instead of using the frictional contact force or the acceleration of the guidewire tip for haptic feedbacks, we compute constrained forces by directly connecting the virtual tool to the end of the guidewire. Therefore, the coupling scheme transmits haptic interactions through constrained dynamics between the virtual tool and the guidewire. Both positional and rotational control modes are implemented and evaluated with respect to the dynamics of the guidewire, user inputs and feedback forces. Experiments highlight the usability of our algorithm for an insertion procedure simulation with complex blood vessel structures. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.