Abstract
We introduce Kolmogorov complexity as a new technique in Formal Language Theory. We give an alternative for pumping lemma(s) and a new characterization for regular languages. For the separation of deterministic contextfree languages and contextfree languages no pumping lemmas or any other general method was known. We give a first general technique to separate these classes, and illustrate its use on four examples previously requiring labourous ad hoc methods. The approach is also successful at the high end of the Chomsky hierarchy since one can quantify nonrecursiveness in terms of Kolmogorov complexity. We also give a new proof, using Kolmogorov complexity, of Yao and Rivest's result that k + 1 heads are better than k heads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.