Abstract

The traditional cutting tools grinding reveals inexact tool flutes that altered the tool strength and affect the chip evacuation capabilities. Moreover, the normal rake angles are neither exact nor varying smoothly on the rake face along the cutting edge. Adopting the rake face grinding process, the wheel shape and path are optimized using GODLIKE scheme in order to grind the tool flutes with exact helical and normal rake angles while keeping close matching to the designed flutes. A tapered ball-end mill is considered in this study due to its extensive role in five-axis sculpture surfaces machining. With this approach proposed, a simple grinding wheel replaces the complex wheels commonly used, and the deviation between the designed and the generated flutes reveals less than 4 % of the tool minor radius. Beside all, a relationship between the radial and the normal rake angles are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call