Abstract
A new method is proposed to evaluate kinetic parameters and mass transfer coefficients for adsorption processes carried out in continuous stirred tank reactors. This method, employing a biphasic model, does not linearize nonlinear solute concentration versus time data, nor does it assume the existence of equilibrium in a typical nonequilibrium situation as is currently done. For a nonlinear adsorption isotherm, the coupled differential equations need to be solved numerically, but using an elegant analytical solution it is possible to determine rate constants and mass transfer coefficients in the case of nonlinear kinetics with a linear adsorption isotherm. This solution (biphasic model, linear isotherm) is obtained and compared with solutions incorporating (i) a linear model (linear isotherm) and (ii) a numerical solution (nonlinear isotherm) for recovery of the antibiotic novobicoin in stirred tank reactors. For novobiocin adsorption versus time data, use of the biphasic model results in a lower mean percentage error than either the linear model or the numerical simulation; further, it provides a far superior fit of short-time adsorption behavior. Hence, we strongly advocate that the biphasic model be routinely employed along with linear models and numerical simulations of Langmuir/Freundlich isotherms for interpretation of adsorption data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Chemical Engineering Journal and The Biochemical Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.