Abstract

Estimating the effective signal dimension of resting-state functional MRI (fMRI) data sets (i.e., selecting an appropriate number of signal components) is essential for data-driven analysis. However, current methods are prone to overestimate the dimensions, especially for concatenated group data sets. This work aims to develop improved dimension estimation methods for group fMRI data generated by data reduction and grouping procedure at multiple levels. We proposed a “noise-blurring” approach to suppress intragroup signal variations and to correct spectral alterations caused by the data reduction, which should be responsible for the group dimension overestimation. This technique was evaluated on both simulated group data sets and in vivo resting-state fMRI data sets acquired from 14 normal human subjects during five different scan sessions. Reduction and grouping procedures were repeated at three levels in either “scan–session–subject” or “scan–subject–session” order. Compared with traditional estimation methods, our approach exhibits a stronger immunity against intragroup signal variation, less sensitivity to group size and a better agreement on the dimensions at the third level between the two grouping orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.