Abstract

The reaction kinetics for gaseous hydroxyl radicals (OH) with deliquesced sodium chloride particles (NaCl(aq)) were investigated using a novel experimental approach. The technique utilizes the exposure of substrate-deposited aerosol particles to reactive gases followed by chemical analysis of the particles using computer-controlled scanning electron microscopy with energy-dispersive analysis of X-rays (CCSEM/EDX) capability. Experiments were performed at room temperature and atmospheric pressure with deliquesced NaCl particles in the micron size range at 70-80% RH and with OH concentrations in the range of 1 to 7 x 10(9) cm(-3). The apparent, pseudo first-order rate constant for the reaction was determined from measurements of changes in the chloride concentration of individual particles upon reaction with OH as a function of the particle loading on the substrate. Quantitative treatment of the data using a model that incorporates both diffusion and reaction kinetics yields a lower limit to the net reaction probability of gamma(net) > or = 0.1, with an overall uncertainty of a factor of 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.