Abstract

In this paper, detection of the stator winding inter-turn short circuit fault (SWISCF) in surface-mounted permanent magnet synchronous motors (SPMSMs) and classification of the fault severity via pattern recognition system (PRS) are presented. In order to automatically detect stator winding short circuit fault and to estimate severity of this fault, artificial neural network (ANN) based PRS has been used. It has been observed that the amplitude of the 3rd harmonics of the current is the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To increase the fault clasification accuracy of PRS both fundamental (1st) and 3rd harmonics are used. In order to validate proposed method experimental results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.