Abstract

The paper presents a coordinate-free analysis of deformation measures for shells modeled as 2D surfaces. These measures are represented by second-order tensors. As is well-known, two types are needed in general: the surface strain measure (deformations in tangential directions), and the bending strain measure (warping). Our approach first determines the 3D strain tensor E of a shear deformation of a 3D shell-like body and then linearizes E in two smallness parameters: the displacement and the distance of a point from the middle surface. The linearized expression is an affine function of the signed distance from the middle surface: the absolute term is the surface strain measure and the coefficient of the linear term is the bending strain measure. The main result of the paper determines these two tensors explicitly for general shear deformations and for the subcase of Kirchhoff-Love deformations. The derived surface strain measures are the classical ones: Naghdi’s surface strain measure generally and its well-known particular case for the Kirchhoff-Love deformations. With the bending strain measures comes a surprise: they are different from the traditional ones. For shear deformations our analysis provides a new tensor , which is different from the widely used Naghdi’s bending strain tensor . In the particular case of Kirchhoff–Love deformations, the tensor reduces to a tensor introduced earlier by Anicic and Léger (Formulation bidimensionnelle exacte du modéle de coque 3D de Kirchhoff–Love. C R Acad Sci Paris I 1999; 329: 741–746). Again, is different from Koiter’s bending strain tensor (frequently used in this context). AMS 2010 classification: 74B99

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.