Abstract

Recently there has been a growing interest and progress in using total least squares (TLS) methods for solving blind deconvolution problems arising in image restoration. Here, the true image is to be estimated using only partial information about the blurring operator, or point spread function (PSF), which is subject to error and noise. In this paper, we present a new iterative, regularized, and constrained TLS image restoration algorithm. Neumann boundary conditions are used to reduce the boundary artifacts that normally occur in restoration processes. Preliminary numerical tests are reported on some simulated optical imaging problems in order to illustrate the effectiveness of the approach, as well as the fast convergence of our iterative scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.