Abstract

AbstractThe dependence of the values of NMR spin–spin coupling constants on molecular conformation can be a valuable tool in the structure determination process. The continuing increase in the resonance frequency of modern NMR spectrometers allows an increasing number of resonances to be examined using first‐order multiplet analysis. While this can easily be done for the simplest patterns (doublets, triplets, quartets), more complex patterns can be extremely difficult to analyze. The task of deducing the coupling constant values from a multiplet is the reverse process of generating a conventional splitting tree from a single line (chemical shift) by sequential branching using a given set of coupling constants. We present a simple, straightforward method of deducing coupling constant values from first‐order multiplets based on a general inverted splitting tree algorithm but also including a peak intensity normalization procedure that utilizes multiplet symmetry and generates a set of possible first‐order intensity distribution patterns. When combined with an inverted splitting tree algorithm, it is possible to find an intensity pattern that allows the deduction of a proper set of coupling constants. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.