Abstract

AbstractIt is demonstrated that an efficient framework for the description of a two surface kinematic hardening/bounding surface plasticity model can be devised if the model is conceived in a normalized stress space in which the bounding surface remains of constant size. The hardening of the bounding surface is contained in the transformation laws linking ‘real’ and ‘normalized’ stresses while the geometric rules controlling kinematic hardening are considered only in terms of normalized stresses.Within the general framework thus constructed, two particular models are developed in outline. Owing to the proposed anisotropic hardening, these models are shown to have the ability to reproduce the observed characteristics of the progressive destructuration of natural cemented clays and of the plastic anisotropy of reconstituted soils. Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.