Abstract
One of the fundamental aspects when working with batteries of statistic tests is that they should be as efficient as possible, i.e. that they should check the properties and do so in a reasonable computational time. This assumes that there are no tests that are checking the same properties, i.e. that they are not correlated. One of the most commonly used measures to verify the interrelation between variables is the Pearson’s correlation. In this case, linear dependencies are checked, but it may be interesting to verify other types of non-linear relationships between variables. For this purpose, mutual information has recently been proposed, which measures how much information, on average, one random variable provides to another. In this work we analyze some well-known batteries by using correlation analysis and mutual information approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.