Abstract
Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional “idealistic” description of QCD and a more “realistic” description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green’s functional Gc(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision.The second result of this non-perturbative analysis is the appearance of a new and simplifying output called “Effective Locality”, in which the interactions between quarks by the exchange of a “gluon bundle”–which “bundle” contains an infinite number of gluons, including cubic and quartic gluon interactions–display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that “non-perturbative” here refers to the effective summation of all gluons between a pair of quark lines–which may be the same quark line, as in a self-energy graph–but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the “Bundle Diagram”. As an example of the power of these methods we offer as a first analytic calculation the quark–antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge-invariant, of a nucleon–nucleon binding potential to form a model deuteron, will appear separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.