Abstract

In this work it has been developed a new approach to study the stability of a system composed by an ELKO field interacting with dark matter, which could give some contribution in order to alleviate the cosmic coincidence problem. It is assumed that the potential which characterizes the ELKO field is not specified, but it is related to a constant parameter $\delta$. The strength of the interaction between matter and ELKO field is characterized by a constant parameter $\beta$ and it is also assumed that both ELKO field as matter energy density are related to their pressures by equations of state parameters $\omega_\phi$ and $\omega_m$, respectively. The system of equations is analysed by a dynamical system approach. It has been found the conditions of stability between the parameters $\delta$ and $\beta$ in order to have stable fixed points for the system for different values of the equation of state parameters $\omega_\phi$ and $\omega_m$, and the results are presented in form of tables. The possibility of decay of ELKO field into dark matter or vice versa can be read directly from the tables, since the parameters $\delta$ and $\beta$ satisfy some inequalities. It allows us to constrain the potential assuming that we have a stable system for different interactions terms between the ELKO field and dark matter. The cosmic coincidence problem can be alleviated for some specific relations between the parameters of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.