Abstract

Optimal imaging is essential for catheter-based interventions in CHD. The three-dimensional models in volume-rendering technique currently in use are not standardised. This paper investigates the feasibility and impact of novel three-dimensional guidance with segmented and tessellated three-dimensional heart models in catheterisation of CHD. In addition, a nearly radiation-free two- to three-dimensional registration and a biplane overlay were used.Methods and resultsWe analysed 60 consecutive cases in which segmented tessellated three-dimensional heart models were merged with live fluoroscopy images and aligned using the tracheal bifurcation as a fiducial mark. The models were generated from previous MRI or CT by dedicated medical software. We chose the stereo-lithography format, as this promises advantage over volume-rendering-technique models regarding visualisation. Prospects, potential benefits, and accuracy of the two- to three-dimensional registration were rated separately by two paediatric interventionalists on a five-point Likert scale. Fluoroscopy time, radiation dose, and contrast dye consumption were evaluated. Over a 10-month study period, two- to three-dimensional image fusion was applied to 60 out of 354 cases. Of the 60 catheterisations, 73.3% were performed in the context of interventions. The accuracy of two- to three-dimensional registration was sufficient in all cases. Three-dimensional guidance was rated superior to conventional biplane imaging in all 60 cases. We registered significantly smaller amounts of used contrast dye (p<0.01), lower levels of radiation dose (p<0.02), and less fluoroscopy time (p<0.01) during interventions concerning the aortic arch compared with a control group. Two- to three-dimensional image fusion can be applied successfully in most catheter-based interventions of CHD. Meshes in stereo-lithography format are accurate and base for standardised and reproducible three-dimensional models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.