Abstract

This chapter presents the design, development and implementation of a novel proposed online-tuning Gain Scheduling Dynamic Neural PID (DNN-PID) Controller using neural network suitable for real-time manipulator control applications. The unique feature of the novel DNN-PID controller is that it has highly simple and dynamic self-organizing structure, fast online-tuning speed, good generalization and flexibility in online-updating. The proposed adaptive algorithm focuses on fast and efficiently optimizing Gain Scheduling and PID weighting parameters of Neural MLPNN model used in DNN-PID controller. This approach is employed to implement the DNN-PID controller with a view of controlling the joint angle position of the highly nonlinear pneumatic artificial muscle (PAM) manipulator in real-time through Real-Time Windows Target run in MATLAB SIMULINK® environment. The performance of this novel proposed controller was found to be outperforming in comparison with conventional PID controller. These results can be applied to control other highly nonlinear SISO and MIMO systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.