Abstract
The paper presents some aspects of the (gray level) image binarization methods used in artificial vision systems. It is introduced a new approach of gray level image binarization for artificial vision systems dedicated to industrial automation temporal thresholding. In the first part of the paper are extracted some limitations of using the global optimum thresholding in gray level image binarization. In the second part of this paper are presented some aspects of the dynamic optimum thresholding method for gray level image binarization. Starting from classic methods of global and dynamic optimal thresholding of the gray level images in the next section are introduced the concepts of temporal histogram and temporal thresholding. In the final section are presented some practical aspects of the temporal thresholding method in artificial vision applications form the moving scene in robotic automation class; pointing out the influence of the acquisition frequency on the methods results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.