Abstract

Recently, dieless forming processes have been introduced to prevent the high costs of dies and tools. Local heating and axial compression process is an innovative method for producing metal bellows. In this research, producing metal bellows using simultaneous local electric arc heating and axial compression has been explained and investigated. SUS304 tubes with an outer diameter of 19 mm and a thickness of 1 mm have been employed to implement the tests. Various parameters could affect the process. Among these parameters, effects of applied displacement and device current, influencing convolution shape, thickness, and required forming force, are studied experimentally. It is found that the height, radius, and angle of the convolution and also the forming force could be controlled by alteration of these parameters. Furthermore, the result of buckling test showed that energy absorption capacity of the manufactured metal bellow has been increased in comparison to a typical tube. This method could be a suitable alternative for induction local heating and can reduce the high equipment costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call