Abstract

Wi-Fi-based positioning technology has been recognized as an effective technology for indoor positioning along with the rapid development and application of smartphones. One of its typical applications is localizing people in large public areas such as shopping malls, schools, and airports. A common and critical task from such applications is localizing people in long narrow spaces such as a long corridor which is considered as the most frequent place where people activities take place. Generally, the geographical distribution of Wi-Fi access points (APs) in long spaces is poor for localizing people since normally less than 3 APs are connected to a smartphone. In addition, all these APs are normally mounted along a straight line; hence, it is difficult to track people using traditional positioning algorithms such as trilateration and fingerprinting. To address this issue, a new approach called same-line-dual-connection (SLDC) was developed to estimate user locations with a good positioning accuracy, particularly for long narrow spaces where only limited Wi-Fi connections are available. The SLDC approach integrates geometry principle with positioning theories and machine learning ideas. The test outcome has shown that the SLDC approach produced a promising result, and a mean positioning accuracy of 1.60 m was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.