Abstract

The problem of flow maldistribution is very critical in microchannel heat sinks (MCHS). It induces temperature nonuniformity, which may ultimately lead to the breakdown of associated system. In the present communication, a novel approach for the mitigation of flow maldistribution problem in parallel MCHS has been proposed using variable width microchannels. Numerical simulation of copper made parallel MCHS consisting of 25 channels has been carried out for the conventional design (CD) and the proposed design (PD). It is observed that the PD reduces flow maldistribution by 93.7%, which facilitated in effective uniform cooling across the entire projected area of MCHS. Temperature fluctuation at fluid–solid interface is reduced by 4.3 °C, whereas maximum and average temperatures of microchannels projected area are reduced by 2.3 °C and 1.1 °C, respectively. PD is suitable in alleviating flow maldistribution problem for the extended range of off design conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.