Abstract
We seek to determine if a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach using forward models of the ocean’s response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables is sought. Allowing the drag coefficient two parameters of freedom, namely the values at 35 and at 45 m/s, we found that the uncertainty in the optimal value is about 20% for levels of instrument noise up to 1 K for a misfit function based on temperature, or 1.0 m/s for a misfit function based on 15 m velocity components. This is within tolerable limits considering the spread of measurement-based drag coefficient estimates. The results are robust for several different instrument arrays; the noise levels do not decrease by much for arrays with more than 40 sensors when the sensor positions are random. Our results suggest that for an ideal case, having a small number of sensors (20–40) in a data assimilation problem would provide sufficient accuracy in the estimated drag coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.