Abstract
In the field of Content-Based Image Retrieval (CBIR), the semantic understanding of textures has long been a difficult problem, especially the texture classification. This paper proposes a new approach for texture classification, which adopts ten words describing textures in natural language. Texture features of an image are extracted by Discrete Wavelet Transform (DWT), and then classified through both Back Propagating Neural Network (BPNN) and Support Vector Machine (SVM) classifiers. Experimental results show that this approach of texture classification for natural texture is feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Applications in Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.