Abstract
In this work, we consider a class of nonlinear integro-differential equations of variable-order. Existence, uniqueness and stability results are discussed. For solving the considered equations, operational matrices based on the shifted Legendre polynomials are used. First, we approximate the unknown function and its derivatives in terms of the shifted Legendre polynomials. Then, by substituting these approximations into the equation and using the properties of the shifted Legendre polynomials together with the collocation points, the main problem is reduced to a system of nonlinear algebraic equations. An error bound is proved for the approximate solution obtained by the proposed method. Finally, some illustrative examples are included to show the efficiency and accuracy of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.