Abstract

This paper addresses a study on the transportation problem based on dual-hesitant fuzzy environment. The dual-hesitant fuzzy set accommodates imprecise, uncertain or incomplete information and knowledge situations in real-life operational research problems that are not possible or difficult to tackle by existing fuzzy uncertainties. Here, we present the concept of uncertainty in a transportation problem using dual-hesitant fuzzy numbers. In most of the research works, fuzzy uncertainty has been considered in transportation parameters. However, we consider the dual-hesitant fuzzy numbers to formulate a mathematical model by considering the capacity of delivering the goods by a decision maker. A special emphasis of this paper is to derive an optimal solution of transportation problem with some restrictions under uncertainty by the traditional approach (cf. Vogel’s approximation method—VAM) without using any mathematical aids. In this regard, an algorithm is developed to find the optimal solution for the dual-hesitant fuzzy transportation problem including some restrictions. Thereafter, the proposed method is illustrated by giving a numerical example for showing the effectiveness. Finally, conclusions are given with the lines of future studies based on this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.