Abstract

Due to the considerable growth in the worldwide container transportation, optimization of container terminal operations is becoming highly needed to rationalize the use of logistics resources. For this reason, we focus our study on the Quay Crane Scheduling Problem (QCSP), which is a core task of managing maritime container terminals. From this planning problem arise two decisions to be made: The first one concern tasks assignment to quay crane and the second one consists of finding the handling sequence of tasks such that the turnaround time of cargo vessels is minimized. In this paper, we provide a mixed-integer programming (MIP) model that takes into account non-crossing constraints, safety margin constraints and precedence constraints. The QCSP has been shown NP-complete; thus, we used the Ant Colony Optimization (ACO), a probabilistic technique inspired from ants’ behavior, to find a feasible solution of such problem. The results obtained from the computational experiments indicate that the proposed method is able to produce good results while reducing the computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.