Abstract

The main goal of Distribution Automation (DA) is the real-time operation, usually without operator intervention, of distribution systems as a consequence of load demand or power generation variations and failure conditions in the distribution systems. As real time voltage control is known as a legacy system that can be fully activated by DA equipments, in this paper an analytical study is reported to demonstrate the effects of load curtailments on voltages profile in distribution network. A new method for real time voltage control, based on emergency demand response program, is also proposed. The proposed method uses the real-time measured data collected by RTUs and determines the tap changer condition and load curtailment required in order to maintain the distribution voltage profile. Emergency conditions include outages of generators and lines, and fluctuations due to unpredictable load demand and renewable generation. A novel voltage sensitivity matrix, based on performed voltage sensitivity analysis due to load participation in demand response program, is also proposed. In order to verify the effectiveness and robustness of the proposed control scheme, it is tested on a typical automated distribution network. Simulation results show that the proper selection of load curtailment can improve voltage profile and that, in emergency conditions, demand response is an effective way to keep the voltage in a permissible range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.