Abstract

AbstractTimely estimations of magma volumes emitted during an eruption or a sequence of explosive events are vital for investigating the eruptive activity and evaluating the associated hazard. A reliable method for estimating erupted volumes is based on the analysis of digital surface models that nowadays can be obtained subsequently using stereo or tri‐stereo optical satellite imagery. However, the real‐time estimation of the erupted volumes is still an open challenge. Here, we explore the capacity of extracting volume estimates from continuous measurements of volumetric strain changes recorded by borehole dilatometers. We compare the volumes derived from numerous high spatial resolution satellite images with high precision strain records at Etna during 2020–2022, when more than 60 lava fountains occurred. The good correlation between the two data sets shows that strain changes can be used as a proxy to estimate the emitted volumes both over time and in real‐time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.