Abstract
The concept of an intuitionistic fuzzy number (IFN) is of importance for representing an ill-known quantity. Ranking fuzzy numbers plays a very important role in the decision process, data analysis and applications. The concept of an IFN is of importance for quantifying an ill-known quantity. Ranking of intuitionistic fuzzy numbers plays a vital role in decision making and linear programming problems. Also, ranking of intuitionistic fuzzy numbers is a very difficult problem. In this paper, a new method for ranking intuitionistic fuzzy number is developed by means of magnitude for different forms of intuitionistic fuzzy numbers. In Particular ranking is done for trapezoidal intuitionistic fuzzy numbers, triangular intuitionistic fuzzy numbers, symmetric trapezoidal intuitionistic fuzzy numbers, and symmetric triangular intuitionistic fuzzy numbers. Numerical examples are illustrated for all the defined different forms of intuitionistic fuzzy numbers. Finally some comparative numerical examples are illustrated to express the advantage of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.