Abstract

Successful provisioning of multimedia services over wireless networks hinges on the ability to guarantee certain levels of quality of service (QoS). Prior assessment of the QoS performance requires employing realistic channel models that not only reflect the physical characteristics of the channel, but that also facilitate analytical investigation of its performance. Finite-state Markov chain (FSMC) models have often been used to characterize the wireless channel, whereby the range of the signal-to-noise ratio (SNR) is partitioned according to some criteria into a set of intervals (states). Different partitioning criteria have been used in the literature, but none of them was targeted to facilitating the performance analysis of the packet delay and loss performance over the wireless link. In this paper, we propose a new method for partitioning the received SNR space that results in a FSMC model with tractable queueing performance. We make use of the level-crossing analysis, the distribution of the received SNR, and the producer-consumer queueing model of Mitra [14] to arrive at the proposed FSMC model. An algorithm is provided for computing the various parameters of the model, including the number of states, the partitioning thresholds, and the “nominal” bit error rates. The usefulness of the obtained model is then highlighted by deriving a closed-form expression for the effective bandwidth (EB) subject to a packet loss constraint. Numerical examples are presented to study the interactions between various key parameters and the adequacy of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.