Abstract

Piecewise Linear Approximation is one of the most commonly used strategies to represent time series effectively and approximately. This approximation divides the time series into non-overlapping segments and approximates each segment with a straight line. Many suboptimal methods were proposed for this purpose. This paper proposes a new optimal approach, called OSFS, based on feasible space (FS) Liu et al. (2008)[1], that minimizes the number of segments of the approximation and guarantees the error bound using the L∞-norm. On the other hand, a new performance measure combined with the OSFS method has been used to evaluate the performance of some suboptimal methods and that of the optimal method that minimizes the holistic approximation error (L2-norm). The results have shown that the OSFS method is optimal and demonstrates the advantages of L∞-norm over L2-norm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.