Abstract
ABSTRACTOil tank detection is a challenging task, primarily due to high time-consumption. This paper aims at further investigating this challenge and proposes a new hierarchical approach to detect oil tanks, especially with respect to how false alarm rates are reduced. The proposed approach is divided into four stages: region of interest (ROI) extraction, circular object detection, feature extraction, and classification. The first stage, which is a key component of this approach to reduce false alarm and processing time, is applied by an improved faster region-based convolutional neural network (Faster R-CNN) to extract oil depots. In the second stage, a number of candidate objects of the target are selected from the extracted ROIs by a fast circle detection method. Afterwards, in the third stage, a robust feature extractor based on a combination of the output feature vectors from convolutional neural network (CNN), as a high-level feature extractor, and histogram of oriented gradients (HOG), as a low-level feature extractor, are used for representing features of various targets. Finally, the support vector machine (SVM) is employed for classification. The experimental results confirm that the proposed approach has good prediction accuracy and is able to reduce the false alarm rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.