Abstract
In this paper, a lumped Galerkin method is applied with cubic B-spline interpolation functions to find the numerical solution of the modified Korteweg-de Vries (mKdV) equation. Test problems including motion of single solitary wave, interaction of two solitons, interaction of three solitons, and evolution of solitons are solved to verify the proposed method by calculating the error norms $$L_{2}$$ and $$L_{\infty }$$ and the conserved quantities mass, momentum and energy. Applying the von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. Consequently, the obtained results are found to be harmony with the some recent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Science and Technology, Transactions A: Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.