Abstract
Abstract. In view of the increase in human activities, climate change and related hazards, land use and land cover (LULC) mapping is becoming a fundamental part of the process of any development or hazard prevention project. From this perspective, we propose a new approach for mapping LULC using Machine learning algorithms by comparing the result of five composition methods based on Google Earth Engine in the city of Tetouan - Morocco. To achieve this goal, considering the Sentinel S2 L2 imageries as a source data , five datasets were derived to make the classification generating by aggregating functions (median , mean , max , min and mode). Then based on the very high resolution (VHR) satellite images provided by Google Earth comes the next step that involves selecting samples that are divided into five classes (barren land, water surface, vegetation, forest, and urban areas), which will be further split into two parts: 70% as a training data -used to feed the machine learning algorithms (support vector machine (SVM), random forest (RF) and classification and regression trees (CART))- and 30% as a testing data for evaluating the models using accuracy assessments. The results for all datasets indicate that the SVM algorithm has the highest accuracy and its performance is better than the other algorithms (RF and CART). The average overall accuracy of SVM , RF , and CART was 87.99% , 87.81% and 84.72% , respectively. Furthermore, for each algorithm, the comparison between the results of the different composites indicates that the use of the mean composite is the most suitable for LULC mapping. Finally, GEE has proven to be an effective and rapid method for LULC mapping, especially with the use of compositional imagery that can assist decision makers in future planning or risk prevention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.