Abstract

Productivity and quality requirements in the aerospace industry involve optimized machine-tools in terms of stiffness, precision, kinematics and dynamics. Many researches aiming at evaluating and optimizing machine-tool performances in the preliminary design stage have been carried-out. This paper presents a new approach for selecting the best appropriate machine-tool architecture, for a given application, based on optimizing conceptual design models. In fact, considered machine-tool structures are modeled with simplified shape parts. The dimensions of these parts are defined as design variables. Afterward, a parametric design optimization is performed for each considered architecture, in order to minimize its total mass under the constraint of a minimal attempted stiffness all over the workspace. After that, several architectures can be compared and classified according to performance indices computed from the mechanical behavior of their corresponding optimized structures. This approach allows restricting the total number of structural arrangements to be detailed further and analyzed more accurately. The paper includes an illustration of the proposed approach through a comparative study between an open-loop and a closed-loop machine-tool architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.