Abstract

We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-space problem. Secondly, it has to form a projection of value equal to one in the direction of selected column. We term it as the normalization problem. The process essentially decomposes the inversion problem and distributes it over columns. Each column can be thought of as a node in the network or a particle in a swarm seeking its own solution, the inverse vector, which lightens the computational load on it. Another benefit of this approach is its applicability to all three cases pertaining to a linear system: the fully-determined, the over-determined, and the under-determined case. It eliminates the need of forming the generalized inverse for the last two cases by providing a new way to solve the least squares problem and the Moore and Penrose's pseudoinverse problem. The approach makes no assumption regarding the size, structure or sparsity of the matrix. This makes it fully applicable to much in vogue large random matrices arising in massive MIMO systems. Also, the null-space problem opens the door for a plethora of methods available in literature for null-space computation to enter the realm of matrix inversion. There is even a flexibility of finding an exact or approximate inverse depending on the null-space method employed. We employ the Householder's null-space method for exact solution and present a complete exposition of the new approach. A detailed comparison with well-established matrix inversion methods in literature is also given.

Highlights

  • Multiple-Input Multiple-Output (MIMO) systems form a well established area of wireless communications [1]

  • The components of the channel matrix are chosen to be independent and identically distributed (IID) circularly symmetric Gaussian random variables with a zero mean and unity variance. m is selected to be equal to n as this refers to multi-user case in MMIMO systems because both the number of transmitting and receiving antennas become very large

  • A novel approach for matrix inversion has been presented in this paper

Read more

Summary

Introduction

Multiple-Input Multiple-Output (MIMO) systems form a well established area of wireless communications [1]. Linear estimation requires the inversion of channel matrix which, in such systems, can be problematic because of its potentially large size. The proposed method is a comprehensive one and is fully applicable to all three matrix inversion cases pertaining to a linear system. The inversion problem is solved according to the proposed method using Householder’s null-space method in the fourth section.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.