Abstract

The development of additive manufacturing offers increasing opportunities in heat transfer. A wider range of materials is used in the 3D printing process of heat exchangers based on the Triply Periodic Minimal Surface. Due to the complexity of these structures, it is difficult to precisely determine the values describing the heat transfer process in these devices. One of the parameters describing the heat transfer process in heat exchangers is the heat transfer coefficient. This study describes a new method for determining the heat transfer coefficient in a heat exchanger based on a gyroidal lattice. The proposed new method allows for determining the heat transfer coefficient values without interfering with the internal space of the compact heat exchanger. The developed formula can be used in the indirect method of determining the value of the heat transfer coefficient in two-phase flow with boiling or condensation of the working medium. The thermal tests were carried out in the range of working flow rates 4–24 kg/h; the media temperature was 20 and 50 °C, the heat flux was from 0.1 to 0.4 kW. Tests were conducted for laminar flow in the 20 < Re < 200 range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.